Additive primitive length in relatively free algebras
نویسندگان
چکیده
منابع مشابه
Ideals and primitive elements of some relatively free Lie algebras
Let F be a free Lie algebra of finite rank over a field K. We prove that if an ideal [Formula: see text] of the algebra [Formula: see text] contains a primitive element [Formula: see text] then the element [Formula: see text] is primitive. We also show that, in the Lie algebra [Formula: see text] there exists an element [Formula: see text] such that the ideal [Formula: see text] contains a prim...
متن کاملRelatively Free Algebras with Weak Exchange Properties
We consider algebras for which the operation PC of pure closure of subsets satisfies the exchange property. Subsets that are independent with respect to PC are directly independent. We investigate algebras in which PC satisfies the exchange property and which are relatively free on a directly independent generating subset. Examples of such algebras include independence algebras and finitely gen...
متن کاملForest Algebras, ω-Algebras and A Canonical Form for Certain Relatively Free ω-Algebras
Forest algebras are defined for investigating languages of forests [ordered sequences] of unranked trees, where a node may have more than two [ordered] successors [9]. We show that several parameters on forests can be realized as forest algebra homomorphisms from the free forest algebra into algebras which retain the equational axioms of forest algebras. This includes the number of nodes, the n...
متن کاملInvariants of Unipotent Transformations Acting on Noetherian Relatively Free Algebras
The classical theorem of Weitzenböck states that the algebra of invariants K[X] of a single unipotent transformation g ∈ GLm(K) acting on the polynomial algebra K[X] = K[x1, . . . , xm] over a field K of characteristic 0 is finitely generated. This algebra coincides with the algebra of constants K[X] of a linear locally nilpotent derivation δ of K[X]. Recently the author and C. K. Gupta have st...
متن کاملPrimitive Ideal Space of Ultragraph $C^*$-algebras
In this paper, we describe the primitive ideal space of the $C^*$-algebra $C^*(mathcal G)$ associated to the ultragraph $mathcal{G}$. We investigate the structure of the closed ideals of the quotient ultragraph $ C^* $-algebra $C^*left(mathcal G/(H,S)right)$ which contain no nonzero set projections and then we characterize all non gauge-invariant primitive ideals. Our results generalize the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Algebra and Computation
سال: 2019
ISSN: 0218-1967,1793-6500
DOI: 10.1142/s0218196719500310